
J O U R N A L O F M A T E R I A L S S C I E N C E 3 8 (2 0 0 3 ) 1589 – 1596

Failure probability of borosilicate glass under
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The objective of this work is to test the hypothesis that the failure probability prediction
model by Fischer-Cripps and Collins can be used without introducing an empirically
derived parameter and therefore can serve as a predictive tool. We examined this
hypothesis by Hertz cone crack initiation tests of flat borosilicate glass statically loaded
through a spherical indenter. The Weibull parameters characterizing the surface flaw
distribution were determined from biaxial flexure experiments using specimens with the
same surface condition as in the indentation tests. Elastic moduli of the specimens were
determined by using ultrasonic methods. In addition, the crack initiation was determined
using stereo microscopy at 20× magnification.

The results demonstrated that the model can predict the minimum critical load and
cumulative failure probability for small indenters within the 90% confidence level.
Therefore, the current work demonstrates that the model can be used as a predictive tool
provided the parameters necessary for the model accurately reflect those of the actual
sample populations that are used for the experimental setup. C© 2003 Kluwer Academic
Publishers

1. Introduction
When the flat surface of a brittle material is statically
loaded through a spherical indenter, a cone crack forms
at a critical load [1, 2]. When such experiments are re-
peated under identical conditions, the critical load data
are known to show significant scatter. For small-radius
indenters, Auerbach [3] experimentally observed that
the average critical load, denoted by Pc, is proportional
to the indenter radius R. This result is known as Auer-
bach’s law. For large-radius indenters, Pc was observed
to be approximately proportional to R2 [4]. In addition,
the cracks generally initiate at a radius 10 to 40% greater
than the contact radius [5]. This percentage has been
shown to increase as the ball radius R decreases [6].

The stress distribution within a specimen loaded
through a spherical indenter was investigated by Hertz
[1, 2] and Huber [7], and an extensive review of con-
tact mechanics was given by Johnson [8]. Hertz-Huber
stress fields show that the maximum tensile stress oc-
curs at the edge of the contact area, and is proportional
to the load, P, and inversely proportional to the square
of the indenter radius, R. This implies that if the Griffith
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fracture criterion is used with the maximum tensile
stress criterion, the theory predicts that the critical load,
Pc, is proportional to R2. This appears to contradict
Auerbach’s law for small indenters.

Frank and Lawn [9] applied the Griffith energy bal-
ance criterion for crack growth in the contact area by
taking into consideration the rapid decrease of the ten-
sile field with depth. Combining the Hertz-Huber stress
field with the assumption that the crack path is along
the σ3 trajectory, they evaluated the strain energy re-
lease rate G for the crack path initiating at the contact
radius a. Mouginot and Maugis [10] further developed
the Frank and Lawn [9] theory by analyzing the possi-
bility of crack initiation at various radii r0 in the vicin-
ity of the contact area. They showed that the minimum
critical load corresponds to the relatively flat maximum
of the envelope of the G-against-c/a curves for various
starting radii r0 (Fig. 3), and is proportional to the inden-
ter radius R. This data provided a physical explanation
of Auerbach’s law.

Fischer-Cripps and Collins [11] and Fischer-Cripps
[12] made significant progress with the model by
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combining the method developed by Mouginot and
Maugis [10] with Weibull statistics. They assumed that
the flaw size distribution could be described by Weibull
statistics and predicted the cumulative failure probabil-
ity as a function of load.

In comparing their predictions of the minimum criti-
cal load against the experimental data, they introduced
a parameter that they described as being related to the
contact friction that occurs between the indenter and the
specimen surface. The value of this parameter was cho-
sen so that an appropriate value of fracture surface en-
ergy could be used. While their methodology addresses
the statistical variation of the experimental results with
respect to the Griffith energy balance model, the em-
pirical determination of this parameter limits the pre-
dictive capability of the theory developed. In addition,
while this parameter was introduced to take into ac-
count friction, their own experimental data of spherical
indentation tests on soda-lime glass with and without
lubrication gave nearly identical results. Therefore, it
raises the question of the true physical interpretation
and necessity of this newly introduced parameter.

The objective of this work is to test the hypothesis
that the method developed in [11, 12] can be used with-
out an empirically derived parameter and therefore can
serve as a predictive tool. We examined this hypothe-
sis through indentation tests on borosilicate glass and
careful reevaluation of the experimental procedure. We
specifically focused on three potential sources of error.
The value of Poisson’s ratio greatly influences the the-
oretical prediction of the minimum critical indentation
load. Therefore, Poisson’s ratio was carefully measured
using ultrasonic methods. Secondly, the ability to ob-
serve the moment of crack initiation can depend on the
observation method and potentially influence the cumu-
lative failure probability versus indentation load curves
generated from this experimental data set. To address
this concern, special attention was paid to the optical
methods used to detect crack initiation. Finally, and
perhaps most importantly, the Weibull parameters were
determined from biaxial tests using the same specimen
surface preparation as in the indentation tests. In order
to take into account the multi-axial stress states, the
fracture-mechanics-based statistical theory of Batdorf
and coworkers [13, 14] was employed to determine
Weibull parameters.

As a result, it was demonstrated that the model
developed by Fischer-Cripps and Collins [11] and
Fischer-Cripps [12] does not require the addition of an
empirically derived parameter to adequately fit the ex-
perimental data of borosilicate glass. The method can
be used to predict the minimum critical load and the
cumulative failure probability versus load with a rea-
sonable degree of accuracy.

2. Theoretical background
In this section, we briefly review the methodologies
proposed in [11, 12], where flaw statistics with energy
balance approaches are combined to describe the prob-
ability of Hertzian fracture. The basic formulation for
indentation fracture of a flat brittle specimen loaded by
a spherical indenter is summarized.

2.1. Minimum critical load determination
As shown schematically in Fig. 1, a Hertzian cone crack
was observed to start slightly outside of the contact area
when a flat brittle specimen was loaded by a spheri-
cal indenter. The rapidly changing axisymmetric stress
field for Hertz spherical indentation on a semi-infinite
space, known as the Hertz-Huber stress field, is sum-
marized in the appendix. Outside the contact circle
of radius a, the 1st principal stress is a tensile radial
stress, and the 2nd principal stress is a compressive
hoop stress. The 3rd principal stress at the surface is in
the direction normal to the surface and is zero due to the
stress free condition outside the contact circle (Fig. 1).
Frank and Lawn [9] have proposed that the crack path is
along the trajectory of the 3rd principal stress in the r-z
plane, σ3. The σ3 trajectory is the curve whose tangents
show the direction of σ3 at the point of tangency. The
motivation behind their work is that the crack growth
should be orthogonal to the maximum tensile stress,
and the known experimental results show the similarity
between actual cone crack and the σ3 trajectory.

Fig. 2 shows the maximum principal stress σ1 plot-
ted along the σ3 stress trajectory (crack path shown in
Fig. 1) for a different crack initiation parameter r0/a,
varying from 1.0 to 1.6. It is clear from Fig. 2 that
the tensile stress diminishes very quickly below the
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Figure 1 Hertzian cone crack.
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Figure 2 Principal stress σ in the r-z plane along crack paths initiated
from different initiation radii r0, a is contact radius. Poisson’s ratio
ν = 0.19.
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semi-infinite surface. In the well-known Griffith cri-
terion for fracture, the surface energy for a new crack is
related to the attendant release in strain energy, and the
surface energy is expressed in terms of Irwin’s stress in-
tensity factor. Frank and Lawn [9] used the prior stress
field without a crack to evaluate the stress intensity fac-
tor KI assuming that a crack starts at the edge of the
circle of contact, r0/a = 1.

Mouginot and Maugis [10] modified the theoretical
development by Frank and Lawn [9] by assuming that
a crack can initiate with a range of starting radii in
the neighborhood of the indenter. They also took into
consideration the expanding crack front and evaluated
the stress intensity factor KI as follows

KI = 2√
πc

∫ c

0

rb

rc

σ (b)√
1 − (b/c)2

db (1)

where the integral is calculated along the length of the
proposed crack path b; c is the crack length; rb and rc
are the radii of the crack at lengths b and c; and σ is the
maximum principal stress in the prior stress field. In-
tegrating the 1st principal stress (σ1) distribution along
the crack path (Fig. 2), the stress intensity factor KI is
obtained as a function of the flaw size c.

The strain energy release rate G for the plane strain
assumption is given by

G = K 2
I (1 − ν2)

E
. (2)

In the case of a spherical indenter, the well-known Hertz
relation between the contact radius a, load P, and in-
denter radius R, is given by

a3 = 4kPR

3E
(3)

with

k = 9

16

[
(1 − ν2) + E

E ′ (1 − ν ′2)

]
(4)

where the Young’s modulus and Poisson’s ratio of the
specimen and those of the indenter are respectively de-
noted by E, ν, and E′, ν ′.

Combining Equations (1, 2, and 3), the strain energy
release rate, G, can be expressed as

G = 3(1 − ν2)P

π3kR
φ(c/a) (5)

where

φ(c/a) = c

a

[∫ c/a

0

rb

rc

(
c2

a2
− b2

a2

)−1/2

f (b/a)d(b/a)

]2

(6)

and

f (b/a) = σ (b/a)

pm
. (7)

Note that a function φ is introduced so that the depen-
dence of crack size, c, on the strain energy release rate,
G, can be expressed in a non-dimensionalized form.

In Fig. 3, φ is plotted as a function of normalized
crack length c/a for a range of starting radii r0/a. As
opposed to Frank and Lawn [9], where only one φ curve
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Figure 3 Strain energy release rate function φ as a function of normal-
ized crack length c/a for different starting radii r0/a.

with r0/a = 1 was considered, Mouginot and Maugis
[10] focused their attention on the envelope of φ for
various values of r0/a (Fig. 3). In particular, they noted
that the envelope of φ reaches a plateau over a range
of flaw sizes and argued that the crack will initiate and
propagate at the minimum critical load Pa correspond-
ing to the maximum value φa of the φ envelope under
the condition of the existence of initial flaw sizes within
this range. Using the crack growth criterion

G = 2γ (8)

where γ is the surface energy, the minimum critical
load Pa can be written as

Pa = kπ3(2γ )

3(1 − ν2)φa
R (9)

where φa is the maximum value of φ. By deriving
Equation 9, Mouginot and Maugis [10] argued that
the minimum critical load Pa is proportional to the in-
denter ball radius R. Therefore, they have shown that
Auerbach’s law (proportionality of the critical load to
the indenter ball size) can be attributed not only to the
diminishing stress field but also to the plateau for the
envelope of the strain energy release rate for various
starting radii.

2.2. Probability of failure under spherical
contact loading

In analyzing Hertzian fracture, Fischer-Cripps and
Collins [11] and Fischer-Cripps [12] combined the
well-known Weibull distribution of critical flaw sizes
with the fracture energy balance model of Mouginot
and Maugis [10]. The Weibull parameters from Brown
[15] were used [12] for data analysis. If the load applied
on the indenter is less than the minimum critical load,
Pa, there will be no crack initiating from the surface
regardless of the flaw size since the Griffith fracture
criterion is not met. If the applied load is higher than
Pa(P > Pa and φ = φa Pa/P(<φa)), it is sufficient to sat-
isfy the fracture criterion G = 2γ . The range of critical
flaw size leading to crack initiation and propagation will
depend on the crack initiation radius r0. For example, in
Fig. 3, given φ = 0.0015, the range of critical flaw size
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varies from c/a = 0.019 to 0.155 for a crack with start-
ing radius r/r0 = 1.1, while it varies from c/a = 0.025
to 0.175 for a crack with starting radius r/r0 =1.2.

Using the crack growth criterion

KIC = σ
√

πc, (10)

Fischer-Cripps [12] divided the surface area into N rings
with inner radius ri and width δri and calculated the
probability to find at least one flaw with size larger
than c1 as

Fi(c > c1) = 1− exp

[
−2kπriδri

(
KIC√
πc1

)m
]

(11)

where i denotes the ith ring region and m and k are
Weibull parameters.

The probability to find at least one flaw with size
between c1 and c2 is given by

F i(c1 ≤ c ≤ c2) = Fi(c > c1) − Fi(c > c2) (12)

Therefore F i is the probability of failure with crack
initiation within the ith annular region.

The failure probability with crack initiation on the
total surface area is then given by

F = 1 −
N∏

i=1

(1 − F i) (13)

3. Experimental setups
3.1. Material and samples preparation
Solid 15.9 mm borosilicate glass rods were sectioned
with a slow speed diamond wheel saw (Leco VC-50,
St Joseph, MI) under water coolant into 1.0 mm and
5.0 mm thick disks. The surfaces of the glass disks
were sanded on a rotating wheel with 600 grit SiC
sandpaper under water coolant. The disks were placed
in distilled water and cleaned ultrasonically for 5 min-
utes prior to examination. The surfaces were examined
under a binocular microscope at 15–20× magnifica-
tion to assure a uniform finish. Any specimen surfaces
that showed visible residual saw cuts were marked and
re-sanded until a uniform surface finish was observed
under the microscope.

3.2. Measurement of elastic properties
Elastic moduli of borosilicate glass were obtained by

ultrasonic measurements of longitudinal Vl =
√

λ+2µ

ρ

and shear Vt =
√

µ

ρ
wave velocities, where λ is Lame’s

parameter and µ is the shear modulus. Young’s mod-
ulus E is E = µ(3λ + 2µ)/(λ + µ). Density was
measured by Archimedes method. The ultrasonic ve-
locity measurements were performed at 10 MHz by
the pulse-echo method by both immersion and contact
techniques for longitudinal wave velocity and by the
contact method for shear wave velocity. A Panametrics
5073 PR pulsar/receiver and a Hewlett Packard 54504-
A 400 MHz digital oscilloscope were used for time de-
lay measurements by the signal overlapping technique.
The sample thickness was measured by a micrometer.

The precision of measurement is limited by the flatness
and parallelness of the sample surfaces and by the cou-
plant effect for the shear wave velocity measurement.
We estimate at least three correct digits in the determi-
nation of the Young’s and shear moduli on our samples.

3.3. Biaxial experiment
In this work, we experimentally determine the Weibull
parameters by using biaxial flexural tests as shown
schematically in Fig. 4. The 1 mm thick disks were
supported at the edge by a ring of bearings and loaded
on the top center through a WC ball indenter with ra-
dius of 4.76 mm. The experiments were carried out on
the Universal Testing Machine (Instron Model 4020,
Canton, Mass.) at a crosshead speed of 0.01 mm/min.
A total of 35 specimens were used to obtain the fail-
ure probability distribution. Under this configuration,
cracks are initiated from the bottom surface, which is
subjected to biaxial tensile stress. The fracture initia-
tion loads, P, were recorded for each specimen and the
data sorted by magnitude of failure load. The cumula-
tive probability Fi of crack initiation at the ith fracture
load Pi is assumed to be

Fi = i/(N + 1) (14)

where N is the number of specimens.

3.4. Indentation test
Indentation tests were carried out using three WC in-
denters with radii of 1.59, 3.00 and 4.76 mm respec-
tively on 5 mm thick glass disks. The specimens were
loaded on a universal testing machine at a crosshead
speed of 0.01 mm/min. A total of 20 specimens were
tested for each of indenter ball size.

A binocular microscope (20×) was used to observe
the initiation of cone cracks. The specimens were trans-
illuminated with fiber optic lights from two different
directions. The microscope was set up to view the spec-
imen through the side of the polished transparent glass
disk. During the observation, the load at which any sign
of crack initiation was observed was recorded as the ini-
tiation failure load. The loading was further increased
after the initiation of crack until a well-developed cone
crack was formed, at which point unloading took place.
As was done for the biaxial data, the crack initia-
tion loads, P, were sorted in the order of their mag-
nitudes and the cumulative probability Fi of crack ini-
tiation at the ith fracture load, Pi, was calculated from
Equation 14.

Load P 

Thickness t

2a 

Figure 4 Biaxial flexure test.
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4. Experimental results and analysis
In the data analysis, the Weibull parameters describing
surface flaw distribution were determined by curve fit-
ting of the biaxial tests data. The minimum failure loads
for indentation tests with various radii of indenter balls
were then predicted based on the theory summarized
in section 2. From these results, the failure probability
versus applied loads for the various spherical inden-
ter sizes were predicted. The theoretical predictions are
compared against the experimental indentation results
(Fig. 6).

4.1. Determination of material parameters
4.1.1. Weibull parameters
Statistical theory for the brittle fracture of structures
subjected to multiaxial loading has been developed by
a number of researchers [13, 14, and 16]. Failure cri-
teria based on the Griffith energy balance are com-
bined with crack size and orientation in these theories.
While there are some differences in the formulations of
these fracture-mechanics-based theories, their equiva-
lence for the case of identical flaw size distribution and
fracture criterion has been demonstrated [17, 18]. This
work employs these fracture-mechanics-based statisti-
cal theories for determination of Weibull parameters
from the biaxial data.

Following Batdorf’s formulation [13, 18], the cumu-
lative probability of fracture, F, is given as

F = 1 − exp

[
−

∫
A

∫ ∞

0

�(σ, σc)

2π

dN (σc)

dσc
dσcdA

]
(15)

where �(σ , σc) is a solid angle determined by the actual
stress σ and critical stress σc according to the appro-
priate fracture criterion [18]. N (σc) is the crack density
as a function of σc, and it is assumed to be in the same
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Figure 5 Best-fit biaxial test data to get Weibull parameters.

form as in [18]:

N (σc) = k̄σ m̄
c (16)

where k̄ and m̄ are the scale and shape parameters. In
the case of a Ball-on-Ring test as shown in Fig. 4, the
above probability F of cumulative failure (15) can be
rewritten as

F = 1 − exp

[
− k̄m̄a2 ID

(
P

πs2

)m̄
]

(17)

where ID and s are given by

ID =
∫ 1

0
d(r/a)

∫ ∞

0
�

(
r

a

)(
σc

P
/
πs2

)m̄−1

d

(
σc

P
/
πs2

)

(18)

and

s = t

(
2 ln

3a

t

)−1/2

(19)

where a is the plate radius and t is thickness, � repre-
sents critical flaw angle which can be determined from
the biaxial stress state and fracture-mechanics-based
critical stress. A crack propagates only if its orienta-
tion falls in the range of �. A constant, s, is intro-
duced for the purpose of non-dimensionalizing stress in
Equation 17. It can be chosen arbitrarily as long as it
has dimension of the length; in this work, Equation 19
is used.

We determine the distribution parameters k̄ and m̄ by
curve fitting of the experimental data of F versus P with
Equation 17. Taking advantage of the linearity between
ln(−ln(1 − F)) and ln(P), simple linear regression is
employed. In Fig. 5 the experimental data and the best
fit obtained by the least squares method are presented.
The values of m̄ and k̄ were determined to be 4.917 and
2.482 × 10−11 mm−2 · MPa−4.917 respectively.
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T ABL E I Material properties

Young’s modulus E 62.5 Gpa
Poisson’s ratio ν 0.19
Surface energy γ 5.5 J · m−2

Weibull parameters
k 2.482 × 10−11 mm−2 · MPa−4.917

m 4.917

For uniaxial tensile tests, Equation 15 reduces to the
well-known Weibull equation

F(σ ) = 1 − exp(−k Aσ m) (20)

where A is the region under uniaxial tensile stress σ ,
and the Weibull parameters k and m in Equation 20 are
expressed in terms of k̄ and m̄ as follows

k = 1

2π
Ium̄k̄; m = m̄ (21)

where

Iu =
∫ ∞

0
�(σ/σc)(σ/σc)m̄−1d(σ/σc) (22)

�(σ/σc) is determined from the uniaxial stress state
and the fracture-mechanics-based critical stress as was
done in the biaxial tests.

Based on the values of m̄ and k̄, the values of m
and k were determined from Equations 21 and 22 and
summarized in Table I.

4.1.2. Elastic moduli and surface energy
Young’s modulus E and Poisson’s ratio ν were mea-
sured ultrasonically as described in section 3.3 and are
listed in Table I. The surface energy γ for borosilicate
glass was taken from [19, 20], where it was obtained
from the measured critical stress intensity factor KIc.

Figure 6 Probability of failure distribution: discrete points are experimental results; lines are analytical results. Three sets of data are presented for 3
different sizes of indenter ball as indicated.

TABLE I I Minimum critical load for 3 sizes of indenter balls

Indenter ball radius (mm) 1.59 3.00 4.76
Minimum critical load (N) 42.4 79.9 126.8

4.2. Indentation test analysis
4.2.1. The minimum critical load for

fracture initiation
From a set of curves for φ versus normalized crack
length for different starting radii (Fig. 3), the maximum
value φa was determined to be 0.0024. Using this value
in Equation 9, the minimum critical load was calculated
for indenter ball radii of 1.59, 3.00 and 4.76 mm. The
results are tabulated in Table II.

4.2.2. Indentation test results
Under indentation load the following sequence of
events is observed. At a certain critical load, a ring crack
begins to appear. Once the ring is completely formed, it
propagates very slowly with increase of load and even-
tually develops into a well-developed cone crack. If at
this moment one begins to decrease the load the crack
often seems to disappear upon unloading. This obser-
vation suggests time dependent material behavior. This
also indicates that it is very important to conduct in situ
observation in order to capture the true crack initiation.
The crack initiation loads were determined as described
in section 3.4.

Based on the methods described in section 2 and the
material parameters summarized in Table I, the cumu-
lative failure probability beyond the minimum critical
load was calculated. The minimum critical loads (zero
failure probability) listed in Table II and the cumulative
probability distributions obtained are plotted as solid
lines in Fig. 6. The cumulative probability of failure for
experimental data is obtained based on the method of
median ranks. The corresponding 90% symmetric con-
fidence intervals are also constructed based on the 5%
and 95% ranks of the experimental data [22].
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The theoretical predictions match the experimental
results very well for indenter ball radii 1.49 mm and
3.00 mm. For indenter ball radius 4.76 mm, the the-
oretical curve shifts to the left relative to the experi-
mental data. Generally speaking, the predictions are
satisfactory.

4.2.3. Discussion of indentation tests
In the theoretical methods described in section 2, both
the minimum critical fracture initiation load and the
failure probability predictions are based on the axisym-
metric analysis. Therefore, the initiation of an axisym-
metric ring crack is implicitly assumed in the analysis.
This requires axisymmetric distribution of the initial
flaws of various depths on the sample surface leading
to an instantaneous initiation of the axisymmetric ring
crack. When the indenter ball size is very small, the ac-
tually initiated crack shape is close to the axisymmetric
cone since the crack precursors quickly develop to be
an axisymmetric ring crack. However, the initial cracks
for larger ball sizes are often not perfect axisymmet-
ric ring cracks, and therefore additional surface energy
is required to create an axisymmetric ring crack from
the initial crack precursors. Therefore, the model based
on the assumption of axisymmetric distribution of the
crack precursors predict smaller failure loads than the
actual experimental results.

5. Discussion of model applicability
to failure prediction

Fisher-Cripps [12] combined the statistical approach
with the fracture energy balance model as summarized
in section 2. However, in comparing the theoretical pre-
dictions against their experimental results, a factor, β,
was introduced into the theory in order to adjust their
estimation of surface energy to the known value of sur-
face energy. They argued that this factor, β, accounted
for the friction between the indenter and the specimen,
citing the work by Johnson et al. [21].

However, in the experimental results by Argon
et al. [5], no significant difference in fracture load was
observed in the comparative tests with lubricated and
unlubricated indenters. Also Fisher-Cripps’ own ex-
perimental results show no significant difference for lu-
bricated and unlubricated spherical indenters. Johnson
et al. [21] commented that the cleaning technique used
by Argon et al. [5] was not sufficiently rigorous to raise
the coefficient of friction above the “boundary lubrica-
tion” value of 0.10 to 0.15 and thus all their tests can be
considered as done under lubricated conditions. If in-
deed, the effect of friction change was not observable in
the “lubricated” and the “unlubricated” experiments, it
implies that the effect of friction for tests with spherical
hard indenters is very small if not negligible. Therefore,
it raises questions as to the validity of the argument
that the empirical parameter β can be attributed to
friction.

In the present work, we find that this additional factor,
β, does not appear to be necessary. It is important to
note that the theoretical predictions shown in Fig. 6

were produced solely based on the measured Weibull
parameters and Poisson’s ratio.

The major difference between our experiments and
those of Fischer-Cripps and Collins [11] and Fischer-
Cripps [12] is that, in this work, the Weibull parame-
ters were determined experimentally by biaxial flexural
tests performed on samples with identical surface con-
ditions as those used for the surface indentation tests.
In previous investigations [11, 12], the Weibull param-
eters were taken from the literature, and therefore, the
specimen surfaces may not have been identically pre-
pared. (Our own experiences show that the consistent
sample surface preparation is critical for the repeatabil-
ity of such experimental data). Also, since crack initi-
ation is determined by optical methods, the resolution
of crack detection may vary from one method to an-
other. Clearly, our data resulted in lower crack initiation
loads than those reported by Fischer-Cripps for similar
glasses [12]. In our work crack initiation was deter-
mined using a method that differed from those reported
previously [11, 12]. The different methods of observa-
tion and sensitivities to crack detection may explain the
generally lower initiation loads observed.

Additional differences may arise from the Poisson’s
ratio determination. A set of φ curves in Fig. 3 is signif-
icantly influenced by the value of the Poisson’s ratio. A
small difference in Poisson’s ratio leads to a large dif-
ference in the calculated value of the constant φa. The
elastic properties of glasses can vary from manufacturer
to manufacturer and should be determined experimen-
tally for a given batch of samples. In our experiments,
Poisson’s ratio was measured ultrasonically. In previ-
ous investigations [11, 12] the method of determining
Poisson’s ratio was not specified and an average value
reported from the literature may have been used.

In summary our experiments demonstrate that the
theoretical model proposed by Fischer-Cripps and
Collins [11] and Fischer-Cripps [12] does not need the
addition of an empirically derived parameter and can be
used as a predictive tool for failure probability analysis
in indentation tests.

6. Conclusions
In this work, we applied the theoretical model devel-
oped by previous investigators [11, 12] to predict inden-
tation tests results for a borosilicate glass. The elastic
moduli of the specimens were determined using ultra-
sonic methods. The Weibull parameters were experi-
mentally determined by biaxial tests using specimens
with the same surface condition as in indentation tests.

The comparison between the theoretical prediction
and experimental data demonstrates an excellent match
for small indenter ball sizes without using any fitting pa-
rameters. The comparison between the theoretical pre-
diction and experimental data for larger indenter ball
sizes demonstrates a slight shift of the theoretical pre-
diction towards smaller values. The difference may be
attributed to the assumption in the model of axisymmet-
ric flaw shape. In general, we obtain good agreement
between the theoretical predictions and experimental
data. The current work further reinforces the theoretical
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model developed previously [11, 12] indicating that it
can be used as a predictive tool and possibly be extended
to other applications.
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Appendix A: Hertz-Huber stress field
The axisymmetric stress field for Hertz spherical in-
dentation on a semi-infinite space, known as the Hertz-
Huber stress field is summarized as follows.

σθθ/pm = −3

2

×




1 − 2ν

3

a2

r2

[
1 −

(
z√
u

)3
]

+
(

z√
u

)

×
[

2ν + u
1 − ν

a2 + u
− (1 + ν)

√
u

a
arctan

(
a√
u

)]



σrr/pm = 3

2

×




1 − 2ν

3

a2

r2
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(
z√
u
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(
z√
u

)3 a2u

u2 + a2z2

+ z√
u
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u

1 − ν

a2 + u
+(1+ν)

√
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arctan

(
a√
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)
−2

]



σzz/pm = −3

2

(
z√
u

)3( a2u

u2 + a2z2

)

τrz/pm = −3

2

(
r z2

u2 + a2z2

)(
a2√u

a2 + u

)

where

pm = P/πa2

is the mean contact pressure, and

u = 1

2

{
(r2 + z2 − a2) +

√
(r2 + z2 − a2)2 + 4a2z2

}
.
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